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Robust Spatial Analysis of Rare Crimes: Modeling Disaggregated Homicide Rates
Abstract

In this paper we use recently developed information-theoretic estimation methods to address the problem of modeling spatial dependence when the criterion variable is discrete. We do so in order to study the impacts of social, structural, and economic macro-covariates on disaggregated homicide rates (measured as a count outcome) at an intra-city levels of areal aggregation – the neighborhood cluster. The information-theoretic method overcomes several of the obstacles traditional maximum-likelihood based methods pose and is relatively easy to implement even with large data sets while providing robust estimates in small and ill-conditioned samples.

1. Introduction

Over the last decade spatial analysis of crime has received increasing attention (Anselin, et. al., 2000). The theoretical basis for linking crime to place can be derived from several sociological (Bursik and Grasmik, 1993) and ecological (Cohen and Felson, 1979; Cornish and Clark, 1986) perspectives on crime, deviance and victimization. The proliferation of user-friendly software and geo-coded crime data has sparked this recent shift in applied work. Although major advances have been made in testing for, and estimating regression models in the presence of, spatially auto-correlated errors when the dependent variable is continuous (Anselin, 1988; Anselin and Bera, 1998), doing so when the criterion variable is discrete has proven to be more challenging. Unfortunately, however, when rates of relatively rare crimes are analyzed at local levels of aggregation, such as census tracts or neighborhoods, dichotomous or count outcome measures are usually the norm. In this paper, information-theoretic methods are employed in an attempt to overcome some methodological challenges that have thus far hindered direct incorporation of spatial-error dependence in models with discrete outcomes. 

A crime that qualifies as being “rare” or one that is discrete by nature, is the homicide rate when measured at local (intra-city) levels of aggregation. Researchers have attempted to explain observed cross-sectional variations in homicide rates with macro-structural covariates at various levels of areal aggregation. These include nations (Braithwaite and Braithwaite, 1980), states (Kennedy, Silverman and Forde, 1991), counties (Land, McCall and Cohen, 1990), Metropolitan Statistical Areas (Balkwell, 1990), cities (William and Flewelling, 1989), and neighborhoods (Baller, et. al., 2001).

Clearly at higher levels of areal aggregation, when the number of homicides is sufficiently large and non-zero rates are observed in almost all of the units, these rates may be considered continuous and traditional spatial analytical methods can be, and have been, applied (Messner et. al., 1999; Baller et. al., 2001). As the unit of analysis becomes smaller, however, three things can be expected. First, the number of outcomes observed decreases thereby discretizing the criterion variable (i.e., the variable approaches a count measure). Second, the number of units with zero counts increases (i.e., the phenomenon of interest moves towards the tails of the distribution). Third, the explanatory macro-characteristics of areal units like neighborhoods, census tracts, etc., may be more volatile over time than those for larger aggregations like counties, states, etc. Therefore, increasing the counts of the rare crimes at neighborhood or local levels by simply counting over extended periods of time may lead to distorted inferences and may mask true data generating processes. 

Of course, the measurement problems noted above relate to any rare crimes. A problem peculiar to homicide research that may further limit the criterion variable is the need for disaggregation. Researchers have long argued for the need to model and assess distinct mechanisms underlying the generation of different types of homicides (Williams and Flewelling, 1988). In applied work, however, the scarcity of disaggregated homicide types at neighborhood levels may preclude this detailed analysis. In extreme cases, one may not have more information than a simple dichotomous criterion variable for each of the disaggregated homicides types. In order to study the processes that generate spatial distributions of rare crimes like homicide, therefore, researchers often aggregate over larger areal units, across several types of homicides, or over longer time periods and rely on spatial analytical methods developed for continuous variables. Even when the discrete nature of the criterion variable is explicitly recognized, researchers are forced to rely on two-stage methods that first convert the discrete outcomes into an approximately continuous variable (using such transformation as the Freeman-Tukey or some form of an Empirical Bayes transformation) which then allows them to apply traditional spatial analytical methods. To the extent that these transformation do not yield the desired distributions, inferences drawn from the resulting models may be misleading as they are based on convenient and ad-hoc assumptions rather than on adequately incorporating knowledge about the underlying data generating processes. 

In this paper we address this shortcoming by incorporating spatial dependence in models of disaggregated homicide rates (treated as a count outcome) measured at an intra-city levels of areal aggregation – Chicago’s 343 neighborhood clusters. To do so, we extend recently developed information-theoretic estimation methods. More specifically, the Generalized Maximum Entropy (GME) and the Generalized Cross Entropy (GCE) method of recovering information from bounded mean problems (Golan, Judge and Miller, 1996) are extended to include spatial-dependence among the errors. These methods have successfully been applied to estimating models with multinomial choices (Golan, Judge and Perloff, 1996; Campbell and Hill, 1999), conditional Logit models (Soofi, 1992), models with censored dependent variables (Golan, Judge and Perloff, 1997), simultaneous equation models (Golan, Judge and Miller, 1998), sample-selection models (Golan, Moretti and Perloff, 1999), multi-level discrete choice models (Bhati, 2001) and in many other applied settings.

The Maximum Entropy formalism has previously also been used in modeling spatial interactions (Fotheringham and O’Kelly, 1989).

2. Background

Structural covariates of homicide rates have been analyzed by several researchers. Motivated primarily by social disorganization, strain and social capital theories of crime, researchers have sought to establish links between the structural, economic and social conditions in areal units with the extent of violent crime observed there (see, among others, Land, McCall and Cohen [1990] and Reiss and Roth [1994] for fairly comprehensive reviews). However, attempts at empirically testing these theories using aggregate homicide rates have been criticized by many (Williams and Flewelling, 1988). To clarify how the macro-processes operating at various levels of spatial aggregation may influence different violent crime rates, researchers have also estimated models with disaggregated homicide rates with varying basis for the disaggregation. These include disaggregation by race (Cubbin, Pickle and Fingerhut, 1999; Parker and McCall, 1999), intimacy (Avakame, 1998), gender within intimate partner homicides (Felson and Messner, 1998) and homicide types (Williams and Flewelling, 1988; Rosenfeld, Bray and Egley, 1999). 

A fairly recent addition to homicide research has been the incorporation of a spatial dimension in the applied work. Borrowing from applied research in other fields involving spatially “labeled” data, researchers analyzing violent crime rates have realized that several social and ecological theories of crime can be neatly couched in the framework provided by spatial econometrics and, at the very least, that these methods are essential to order to improve inferences. Whether this be exploratory spatial data analysis (ESDA) or analyzing spatial diffusion and spill-over effects or simply addressing the inefficiencies introduced by error-dependence over space, spatial analytical methods have proven useful in clarifying the links between macro-covariates and homicide rates (see, among others, Baller, et. al., 2001; Morenoff, Sampson and Raudenbush, 2001) or in modeling other rare crimes (Smith, Frazee, and Davison, 2000). 

With the wealth of geo-coded data that is increasingly becoming available at local levels both from census sources and from primary data collection efforts, researchers analyzing homicide rates as well as other rare crimes are more frequently confronted with the need to apply spatial econometric methods to outcomes that are discrete by nature. The need to study disaggregated homicide rates only further aggravates the problem. Applying spatial analytical concepts to discrete data, however, proves challenging for several reasons. 

First, currently there is no well established estimation method for such models. For example, to analyze binomial or multinomial choice outcomes researchers have proposed several likelihood based estimators (Besag, 1974; Case, 1992; McMillen, 1992; Bolduc, Fortin and Gordon, 1997; Heagerty and Lele, 1998) or, making use of the concept of a generalized residual (Poirier and Rudd, 1988), a generalized method of moments estimator (Pinske and Slade, 1998). To analyze count data researchers rely mainly on Bayes, Empirical Bayes, or Maximum-Likelihood estimators of the so-called Poisson “auto-models” (Besag, 1974; Clayton and Kaldor, 1987; Cressie and Read, 1989; Cressie and Chan, 1989; Kaiser and Cressie, 1997; Waller, et. al., 1997). These estimators, though feasible, can be extremely resource intensive to implement. For example, those of them that rely on maximum-likelihood based methods are extremely difficult to estimate because of the need for 
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 way integrations of joint probability distributions. In practice, most researchers rely on a two-stage approach where the criterion variable is first converted into an approximately continuous variable and then traditional spatial analytical techniques are applied to it (Morenoff, Sampson and Raudenbush, 2001). 

Second, the small sample properties of these methods are not well established. When dealing with intra-city areal units like neighborhoods, one may be restricted to a sample of less than a hundred or a few hundred observation that are spatially dependent. Such sample sizes coupled with highly collinear (ill-conditioned) data reduce the efficiency of the estimates. 

Finally, all of these methods invoke some form of parametric distributional assumption a-priori. A commonly overlooked aspect in such settings is that when there may be a preponderance of zero counts, the rare outcomes may be occurring in the tails of the distribution. Therefore, model estimates as well as the inferences derived from them are extremely sensitive to distributional assumptions made. It is well known, for example, that Logit and Probit models of discrete choices provide different inferences in the tails of the distributions (Maddala, 1983). 

The methodology that is applied in this paper offers several advantages over existing approaches. It does not need a-priori distributional assumptions; is robust in the presence of small and ill-conditioned samples; does not require high dimensional integration of marginal probabilities; and does not require the inversion of the spatial weight matrix. Therefore, it can be easily implemented in both small as well as very large samples. In addition, in the absence of spatial dependence, the approach leads to inferences that are identical to those arrived at using more traditional likelihood-based methods.

3. Methodology

The information-theoretic approach used in this paper may best be viewed as a procedure to reduce uncertainty about the outcome of interest. For an overview of the approach, detailed references, as well as several applications, see Golan, Judge, and Miller (1996). See also Soofi (1994) and Golan (2002) as well as other articles in the 2002 Journal of Econometrics special issues on Information and Entropy Econometrics for general discussion about the concept of information and its application in econometrics. 

3.1 The Information-Theoretic Approach

No matter what the application, typically the starting point for the information-theoretic approach is the familiar identity
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where, 
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so that the above equality may be written as
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Here 
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 are sets of well-defined probabilities (i.e., 
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). Now we may use the available (hypothesized) data to constrain these probabilities. This yields moment constraints of the form
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The above equations, along with the adding-up constraint of 
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 unknowns. As such, this is an ill-posed inversion problem as there are infinitely many solutions that will satisfy these data constraints. How do we select one out of these infinite solutions? Faced with such a problem in statistical mechanics, Edwin Jaynes proposed maximizing the uncertainty implied by the probabilities as a means of selecting an optimal solution (Jaynes 1957a; 1957b). In other words, from all the probability vectors that satisfy the moment and adding-up constraints, Jaynes proposed selecting the one that implies maximum uncertainty. That way the recovered information will be as conservative as the data allow it to be. Put another way, the optimal solution is the one that “just” satisfies the data constraints required of it. 

The next obvious question then is – how does one measure (quantify) uncertainty? In the context of a problem in communication theory, Claude Shannon (1948) had defined the uncertainty contained in a message with 
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 mutually exclusive and exhaustive outcomes as 
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. He termed this quantity Information Entropy. Jaynes proposed to use this measure as the criterion function to maximize subject to the data constraints in order to derive conservative inferences from a sample. The resulting constrained optimization problem can be written as
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subject to the moment constraints of (3) as well as relevant adding-up constraints on the probabilities. This results in a constrained maximization problem – aptly named the Generalized Maximum Entropy (GME) problem. If, in addition, the researcher has some prior knowledge about the outcome of interest, i.e., prior knowledge about the distributions 
[image: image30.wmf]p

 and 
[image: image31.wmf]w

, then these may be introduced into the information-recovery problem by means of prior probabilities (denoted, say, by 
[image: image32.wmf]p

0

 and 
[image: image33.wmf]w

0

) which then result in a Generalized Cross Entropy (GCE) problem. Unlike the GME approach, where we maximize uncertainty implied by the probabilities, in the GCE framework, we minimize the Cross Entropy, or the Kullback-Leibler informational distance (Kullback, 1959), between the posterior probabilities and their priors. This yields a constrained minimization problem denoted as
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subject to the moment constraints of (3) and all relevant adding-up constraints on the probabilities. It is possible to derive the GME estimator as a special case of the GCE estimator when all prior probabilities are equal. In other words, if we minimize the informational distance between the posterior probabilities and completely uninformative (diffuse) priors, then the problem is identical to one in which we maximize our uncertainty about the outcome of interest.

Different specifications of the moment constraints as well as the support spaces result in a rich variety of models that contain, as a subset, several traditional models for discrete and continuous outcomes. In the next section, we explicitly solve the optimization problem in two common settings.

3.2 Some Common Models

Consider first the model for a simple binary choice outcome. In this setting, the outcomes consist of two choices: 
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. The expected outcome is a weighted combination of these two possible extremes. Therefore, we define the signal (expected outcome) as 
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. In addition, if we make the traditional orthogonality assumption about the exogenous covariates and the errors and assume that the average errors are washed out in the sample (i.e., 
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which may be used to set up the constrained maximization problem (Levine, 1980). The Lagrange function for the primal optimization problem is
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solving the first order conditions for which yields the following familiar solution for the probabilities
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Here, 
[image: image44.wmf]l

k

 are the 
[image: image45.wmf]K

 different Lagrange multipliers from (7) and 
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, called the partition function, ensures that the probabilities are well defined (i.e., sum to 1). If we insert this optimal solution from (8) back in the primal problem of (7), we derive the dual of the constrained optimization problem, i.e., an unconstrained minimization problem in the unknown Lagrange multipliers. This dual objective function is derived as
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which, based on the definition of 
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 from (8), is identical to the Logit log-likelihood function with each 
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, the final solutions to these problems are identical. In fact, the asymptotic covariance of the two sets of estimators are identical. These results, as well as the asymptotic equivalence of the inferences derived from GME and multinomial choice Logit model, are explicitly derived in Golan, Judge and Perloff (1996).


Next, consider the case where the observed outcome is a result of a summation over a series of Bernoulli trials (i.e., a series of binary choices). Traditionally, this is the motivation for a binomial distribution. If each of the Bernoulli trials are independent and if we repeat the experiment an infinite number of times then we obtain an average success rate which may or may not depend on exogenous factors. However, it must be positive and must represent a skewed distribution.

Traditionally, these requirements are satisfied by assuming a Poisson distribution for the outcome of interest and the natural log of the expected outcome is modeled as a linear function of the exogenous factors. Under the information-theoretic approach, we re-parameterize the signal into well defined probabilities using only what we know about the data generating process, i.e., the process described in the last paragraph. Hence, the moment constraints of (3) are written as
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where 
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 now represent the counts of the event over a large number of trials. Once again making the traditional assumption that the errors are washed out in the aggregate, we can set up a constrained maximization problem and obtain solutions for the probabilities of interest. Since the probabilities are constrained jointly (i.e., only in summation form) they will be identical across trials. Put another way, since we cannot observe exogenous or endogenous variables that allow us to distinguish 
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, therefore, they will be operationally identical. In other words, we have a large sequence of independent and identical Bernoulli trials. 

Unfortunately, however, as the number of trials approaches infinity, the support space for the problem approach infinity as well and, as such, we have an information-recovery problem with varying expected outcomes even under the null. That is, simply by assuming that the experiment was performed 1000 times rather than 100 times we would change the expected outcome even if none of the exogenous factors had any effect on the signal. Therefore, the information-recovery problem depends explicitly on the bounds set by the research – which can be largely subjective. Hence, we need to anchor the expected outcome under the null to a fixed value. Since the unboundedness of the problem is derived from the increasing number of trials we define a prior probability for each trial as 
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which yields estimates of the Lagrange multipliers 
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 that are identical to maximum-likelihood estimates from an assumed Poisson distribution as 
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. This is not surprising as the Poisson distribution is a special case of the Binomial distributions when the number of trials approaches infinity. However, since the posterior distribution is shrunk towards a non-uniform prior, the asymptotic covariance of the estimated parameters have to be appropriately adjusted. This adjustment is needed to account for the fact that even under the null hypothesis (i.e., all Lagrange multipliers are 0) there is still some information in the model based on the priors. The adjustment is implemented by dividing the inverse of the negative Hessian of the dual objective function by the variance of the expected outcome under the null-hypothesis. This results in a convergence in the asymptotic covariance matrix with that of a Poisson model as 
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 and proceed with using the traditional binary choice outcome GCE dual objective function. Of course, the priors in the two setting are different and the count outcome case needs the appropriate correction to the covariance matrix. Other than that, the objective functions are identical.


Similar derivations for the continuous outcome case can be derived but will be omitted here as they will detract from the main purpose of this paper – allowing for spatial dependence in the sample observations when outcomes are discrete. In the next section, we explain how the moment constraints of (3) can be appropriately modified to yield the desired dependence across space. The derivation that follows will intentionally be left general as it can be applied to both the settings described above (binary choices as well as count outcomes).

3.3 Dependence across space


In the derivations of the previous sub-section, it was implicitly assumed that individual units are independent across space. If they are not independent, then it was explicitly assumed that conditional on the observed exogenous data (i.e., the 
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) they can be considered independent. Put another way, knowledge about the exogenous factors removes (explains away) any and all dependence among the individual units. More often than not, however, there is missing but relevant information because we are typically unable to observer everything that matters in explaining the distribution of the outcome of interest. If the missing variables or missing information has no discernable structure (at least none that we can hypothesize), then we have no choice but to assume that it is randomly distributed in the sample and that “on average” it has no effect. In fact, that is precisely what we do when we make the traditional orthogonality assumptions, i.e., when we assume that 
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. However, if the missing information has some structure then ignoring it introduces inefficiencies in our estimates. Intuition suggests that acknowledging that units are geographically contagious should, in some way, contain more information than simply assuming that units are independent of one another. Put another way, the fact that areal units in the sample are meaningfully (in some way) close to one another, should contain some information even before we introduce the exogenous variables. Ignoring this dependence is the source of inefficiency. 


In this paper we are interested in improving our inferences about the affects of the exogenous variables on the count outcomes of interest and so the emphasis is on mitigating the ill-effects of the structure in the missing variables. There are two issues that come up as a result of this problem. First, because individual signals (or the expected outcomes) are not independent of one another we need to allow for possibly global dependence. Second, the dependence is not without structure. Somehow we need to introduce the notion of distance based dependence among the signals in our sample. 

In what follows, we introduce these two components separately. We begin by allowing unstructured global dependence in the model and derive the objective functions. Then, we explicitly introduce structure to the dependence. The final model, of course, contains both components. It may seem awkward to some readers that we are modeling dependence among all the observations in the sample without an explicit functional form. However, the distinction between dependent and independent observations is defined simply in terms of the extent to which the underlying probabilities are allowed to be generated jointly. When modeling unstructured dependence, we simply allow all the probabilities in the sample to be generated jointly.

3.3.1 Unstructured global dependence

We continue to re-parameterize the moment constraints in our information recovery problem in the most generic form, i.e., as in (3), and proceed to solve the problem in the GCE framework (keeping in mind that the GME is a special case of it). In that generic form, we explicitly need to include adding-up constraints in the model. That is, in the primal objective function of (7) we explicitly have sets of adding-up constraints on the probabilities of interest. This primal problem can be written as
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solving which will, under the specific conditions spelt out earlier, result in the binary choice or the count outcome model solutions. However, as discussed above, the assumption about the independence of the signal is violated when we allow for some dependence (for now unstructured) among the unknowns. Therefore, we need to relax the constraints on the probabilities in such a way as to allow for this dependence.

Assuming that the relevant probabilities sum to 1 
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 is what specifies that the signals are independent. But, this also implies that 
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 over all observations. Therefore, if we are to assume signal dependence than we need to assume only the latter and not the former. That way we are relaxing our constraints considerably. However, this can potentially result in degenerate solutions where some of the probabilities may be larger then one. Hence, we need to re-formulate the problem appropriately to rule out such degenerate solutions.

To do so, we first define an auxiliary probability vector, denoted by, say, 
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 over all observations. Now the entire information-recovery problem can be re-formulated in terms of 
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. With this reformulation, we can re-write the primal Lagrange function in terms of the auxiliary probabilities only and allow the adding-up constraints on these auxiliary probabilities to be specified only over all observations. This re-formulation yields
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Solving the first order conditions analytically and making the assumption that 
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 in terms of all the data because all the probabilities are jointly distributed. This allow us to obtain the dual objective function as
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where the partition function 
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 is defined over all observations as
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Now, if one wishes to, one may estimate the auxiliary probabilities, i.e., 
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. Since the estimation is done on the joint distribution over all observations, therefore, the estimated conditional probabilities and consequently the pure signal will be free of any confounding effects of the unstructured global dependence.

3.3.2 Allowing a spatial structure to the global dependence

The above procedure can be applied on its own to a sample of data. However, it only allows one to incorporate unstructured dependence in the signal. An important aspect of the spatial nature of the data is that there is structure to the dependence and we have reason to believe that this dependence is a function of distance between the various areal units. It is possible to invoke any of the traditionally acceptable methods of measuring this spatial (or even social) distance. See, for example, Chap.3 of Tiefelsdorf (2000) for several coding schemes. In this paper, we restrict our attention to the generic row-standardized weight matrix that is assumed fixed and exogenous to the information recovery problem and that is a monotonic decreasing function of the physical distance between the centroids of all first-order contiguous neighboring areal units. 

For simplicity we will restrict our attention to the first order auto-regressive case. Extensions to higher order are possible but left for future work. Additionally, for simplicity we deal here only with the first-order auto-regressive (SAR) scheme and not the moving average (SMA) scheme. Note that the auto-regressive scheme we are modeling here is in the unknowns and not the dependent variable. In other words, the emphasis in this paper is on addressing the inefficiencies introduced by a first-order auto-regressive structure in the unobserved but relevant variables. Extensions of this framework to the case where a spatially-lagged dependent variable enters the set of regressors are currently being developed. 

Treating the spatial dependence as a nuisance, therefore, our primary interest is in extracting from the sample some estimate of a “pure” uncontaminated signal that will yield estimates of the impacts that the various included regressors have on the outcome. The outcomes that we observe in reality, however, were generated from the complete signal – with the included as well as missing but relevant variables. Our task then is to modify the moment constraints of (3) in such a way as to model the pure signal while allowing the outcomes to be generated from the spatially dependent ones. That is the challenge. 

To motivate this step we assume a simple structure for the first-order spatial auto-regressive dependence in the signals. That is, we let
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which simply reads that the signal generating the observed outcome at the ith location is related to the signals generating the outcomes at its neighboring locations (where 
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 is taken to read all j units in the neighborhood of the ith unit) plus a pure signal. Here 
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 is the entry in the ith row and jth column of the weight matrix. Note that this is the stage where the pure signal gets introduced into the problem. 
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 is our pure signal of interest. We are interested in making inferences about this pure signal. 

Unfortunately, however, there is a problem with the specification of the relationship in (16). Since the signals are bounded by 0 and 1, we see that the LHS of (16) is correctly bounded, i.e., is
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. So there is a problem in our specification of the structure in the dependence. In order to proceed we need to normalize this relationship so that the LHS and RHS of the (16) are balanced. We do this by normalizing the RHS by 
[image: image104.wmf]1

+

k

. The balanced relationship is of the form



[image: image105.wmf]z

p

d

z

p

z

l

il

l

ij

j

J

l

jl

l

l

il

l

i

å

å

å

å

=

+

+

ì

í

î

ï

ü

ý

þ

ï

Î

1

1

k

k

p


(17)

What we traditionally consider the spatial auto-correlation coefficient is, in this setting, defined as 
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. Next, we use (17) to modify our basic moment constraints of (3) to get
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and proceed as before. The probabilities 
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 can no longer be considered independent because we have assumed so in (17) and we know that they have global dependence. We can allow this global dependence using the unstructured method described in the last sub-section because its structure is explicitly modeled in the moment constraints. Also note that, in addition to the entropy implied by the probabilities 
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This completes the re-specification of the problem. Setting up the Lagrange function as before (i.e., assuming 
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), we can solve for and obtain a dual objective function of the form
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where,
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and
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This dual optimization problem yields a solution that is, in effect, the most conservative estimates of the 
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 and 
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 that could satisfy the moment and adding-up constraints we have specified. Note that even though two sets of signals are recovered from the sample simultaneously – i.e., the pure signal and the spatially contaminated ones that generate the outcome of interest – the complexity of the information-recovery problem is not increased. That is, the number of constraints imposed are the same (
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 that allows us to explicitly quantify the extent of spatial dependence. If we are unable to reject the null hypothesis that 
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, is equal to 0, then we may revert to the traditional likelihood-based models or the GME/GCE models that yield the same results. If not, using the above method we will obtain robust estimates of the pure signal and its determinants will be free of the confounding effects of spatial dependence among the unknowns. The final functional form for the probabilities used in recovering the pure signal is
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where 
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i

 is defined in (20). Therefore, while comparing the coefficients in this specification with the signals where we do not incorporate the spatial dependence, we need to compare relevant parameters. Here, the effect of a variable, say 
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From the unconstrained optimization of (19) we can obtain an estimated asymptotic covariance matrix for 
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 we need to use some transformation technique like the delta-method (Greene, 2000, pg 357). Here we implement this transformation as follows. Let 
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. Now hypothesis tests can be conducted on the parameters of interest including 
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In Section 5 we use this methodology to explicitly model the impacts of exogenous factors on the disaggregated homicide rates.

4. The Data


The unit of analysis used for this paper was the Neighborhood cluster. The results provided here are from ongoing research where we are explicitly testing the inferences derived from the above method with those arrived at by other researchers using alternative methods. The use of neighborhood clusters as a unit of analysis was purely for reasons of comparability. Clearly, there may also be theoretical reasons to define “geographically contiguous and socially similar” (Morenoff, Sampson, and Raudenbush, 2001) neighborhood clusters as the appropriate unit of analysis. Moreover, if neighborhood clusters, as defined by the Project on Human Development in Chicago Neighborhoods, are relatively homogeneous then the analysis is less open to criticism for use of arbitrary units of analysis. Ultimately, however, the appropriateness of the unit for analysis depends on the phenomenon being explained. 

The dependent variables – counts of disaggregated homicides in Chicago’s neighborhood clusters in 1990 – were obtained from ICPSR Dataset # 6399: Homicide in Chicago, 1965-1995 (Part 1, Victim Level File). This file contains detailed information on victim, offender and circumstance for each homicide. Additionally, it also contains variables that summarize the “type” of homicide (Block and Block, 1998). This variable, SYNDROME, was used to distinguish the various types of homicides and create the various counts. The original coding in the data contains 10 different categories which include gang-related (01), sexual assault (02), instrumental (03), spousal attack (04), child abuse (05), other family expressive (06), other known expressive (07), stranger expressive (08), other (09) and mystery (10). These categories were combined into six categories by collapsing values 04, 05 and 06 into a generic “Family” related expressive category and 02, 09 and 10 into the “Other” category. The original categories 01, 03, 07 and 08 were defined and used as they are originally. Also, each victimization is flagged by the location where the victim's body was found. In the public release version of the data this information is provided only by means of a census tract number. Using this information, along with the recoded homicide-types, raw counts were computed at the census tract level and were then added up to the neighborhood cluster level. Estimating models at other levels of areal aggregation such as the census tract or community area (in Chicago) is part of our ongoing research.

The independent variables – social, structure and economic macro-covariates – were all obtained from public sources. For exposition purposes we used the following fixed set of regressors in the analysis presented here. It is obvious that these models are incomplete. Also, it is obvious that the different types of homicides being modeled should be modeled differently, i.e., different sets of factors probably best explain them. However, here we have avoided these clarifications (though very relevant) in the interest of highlighting and emphasizing the main methodological innovation being proposed. The variables we include in all our models are 

· proportion of neighborhood population that is black (SHRBLK9), 

· proportion of neighborhood population that is Hispanic (SHRHSP9),

· proportion of neighborhood households that are headed by females (FFH9),

· proportion of all neighborhood households that are non-family (PERNFH),

· proportion of all persons over 25 years of age who have completed high-school (PERHS),

· the neighborhood unemployment rate (UNEMPRT9),

· proportion of neighborhood population below the poverty line (POVRAT9), and

· proportion of owner occupied housing units where the head of household has lived for at least 5 years (HH5YROC).

5. Results


In this section we present preliminary results of the methodology proposed in this paper to the data described above. Our interest is three fold. First, we would like to assess the impacts of the included covariates on the pure signal. Second, we would like to derive inferences on the extent of auto-correlation and be able to perform hypothesis tests on that. Finally, we would like to see if different homicide types have distinct mechanisms generating them. For the first two of these, we provide formal statistical tests of significance. For the third, our analysis is non-technical. We simply record the results of each of the distinct models and informally assess if different sets of factors appear significant in different models. 

Table 1 presents the results of a model of the overall homicide count observed in the neighborhood clusters in 1990 modeled on the included covariates and an intercept under various specifications. Under the column labeled Poisson ML, the parameter estimates along with their standard errors were computed using the information-theoretic approach for such outcomes, i.e., using the dual objective function given in (11) with 
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. The parameter estimates and the standard errors are identical to those that are obtained by assuming a Poisson distribution assumption for the count outcomes and maximizing the relevant likelihood function using PROC GENMOD in SAS. In the columns following that we provide estimates of the same quantities (i.e., the impacts of the relevant covariates on the pure signals) while controlling for spatial dependence using different spatial weight matrices. In addition, in each of these columns, we provide the parameter estimates of the spatial autocorrelation coefficient 
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 along with its asymptotic standard error. The asymptotic standard errors and the parameter estimates are used to construct Wald tests that allow us to test the null hypothesis by comparing this statistic against a 
[image: image142.wmf]c

2

 distribution with 1 degree of freedom (that has a 95% critical level of 3.84).

Table 1: Poisson regression estimates of the impacts of various socio-economic and structural macro-covariates on the counts of all homicides in Chicago’s neighborhood clusters (1990).
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There are several point worth noting here. First, under the specifications where we allowed spatial dependence, the parameters on several covariates are substantially different but some only marginally so. That is, allowing for spatial dependence alters the point estimates of the parameters of interest. The extent of the change is, of course, sample specific but also depends, as expected, on the specification of the weight matrix.

Second, the standard errors on these parameters are also adjusted. In almost all cases the standard errors are reduced. This means that the parameter are much more stable now and we should be able to distinguish parameter estimates from 0 with more reliability and confidence. More indicative of the increased efficiency of the estimates is the fact that for almost all parameters the relevant Wald test statistic is substantially higher than under the traditional ML Poisson case. Therefore, some parameter that would be considered insignificant using the traditional Poisson regression may be deemed statistically significant once the contaminating effects of spatial dependence are removed (e.g., the coefficient on HH5YROC using D2 as the spatial weight matrix).

Finally, for all three weight matrices specified, the auto-correlation coefficient, as measured by 
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, is in the range of 43% to 51%. In all three cases the standard error on this estimate are sufficiently small and we are guaranteed that there exists auto-correlation among the relevant but omitted variables, i.e., the errors. 


Next, to demonstrate the workings of the estimator we provide more details results for this model using the exponential decay weight matrix (D3). These results are presented in Table 2. In addition to the final parameters displayed in Table 1, here we provide parameter estimates of the underlying Lagrange multipliers and 
[image: image144.wmf]k

. It should be noted here that these underlying Lagrange multipliers may be of interest in other setting. For example, if we wished to model the expected outcome with the pure as well as the spatially dependent signals. In other words, if we were interested in assessing the impacts of a change in an independent variable on the entire system (not just the pure signal), then these parameters are relevant. In addition, we provide estimates of the relevant parameters while allowing global but otherwise unstructured dependence among the signals.

Table 2: GCE Estimates of the underlying and transformed parameters for all homicides model using an exponential decaying weight matrix as well as a model that permits global but unstructured dependence in the signals.
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Clearly, allowing global dependence without any structure adds little to the model. Comparing the parameters and relevant standard errors in the last three columns of Table 2 with those in the first three columns of Table 1, we see that the changes are almost trivial. The main gain, therefore, comes only when we allow for a spatial structure to the dependence. Now we see that the transformed parameter estimates are mostly lower in magnitude (with some exceptions) than the traditional Poisson ML estimates but the standard errors are always lower. It is unclear whether this can be considered a general rule of thumb or if this finding is specific to the case analyzed. In all likelihood, it is the latter.

Finally, we present results of estimating these model separately for each of the different homicide types. As mentioned before, the analysis includes all covariates in all models – which may not be a sound approach. However, here our interest is in investigating differences in parameter estimates. The results are displayed in Figure 1. Each of the panels in the figure show the parameter estimates along with confidence intervals (defined as twice the standard errors of the estimates) about them. The parameters displayed are the transformed parameters from the GCE problem that permits spatial auto-correlation.

For comparison purposes, each panel in the figure displays the parameter estimates of a given covariate on all the different homicide types including an estimate with all homicides modeled jointly. For purposes of brevity, we display results only for the case of the spatial weight matrix is based on exponentially decaying weights that were row standardized (i.e.
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Figure 1: Transformed Parameter estimates (
[image: image146.wmf]b

) of the impacts of included covariates on each of the disaggregated homicide rates while permitting first-order spatial auto-correlation.
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Figure 1: (Continued)
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There seems to be substantial variation in the impacts of the several included covariates on the different types of homicides included in this analysis. Most evident are the effects of the structural macro-covariates (SHRBLK9 and SHRHSP9). Although higher proportions of blacks and higher proportions of Hispanics in the neighborhood are both associated with increased number of homicides (of all types), the impacts have different magnitudes. For example, SHRBLK9 has the highest impact on Family related homicide counts where as SHRHSP9 has the highest impact on Gang related homicide counts.


The social macro-covariates (FFH9 and PERNFH) also show some interesting variations. Having a higher proportion of neighborhood households that are female headed seems to be associated with a decrease in family related homicides. This, while controlling for the effects of the prevalence of non-family households. The proportion of households that are non-family has a positive association with the counts of Instrumental and Family related expressive homicide counts. In both these cases, if we had analyzed the combined homicide count, we would have inferred almost negligible associations.


Of the economic indicators included in the analysis only poverty rate had statistically significant effects on the counts of some homicide types (Gang related, Family related expressive and Known expressive). Neither the unemployment rate nor our measure of residential stability (HH5YROC) were significantly associated with counts of any of the homicide types analyzed.


Finally, we note that the auto-correlation coefficient was large (relatively, almost 50%) in all the different models analyzed. In addition, although its reliability was the highest in the model with all homicides analyzed jointly (i.e., the narrowest confidence interval), the coefficients were statistically significant in all the disaggregated models. 

6. Discussion


In this draft paper we have presented preliminary results of an analytical approach that allows one to model spatial dependence in models with discrete outcomes. The emphasis was on explaining the information-theoretic approach being used here. However, the few results that are presented indicate the following. First, the method provides meaningful estimates of the parameters of interest. As expected, some bias in the parameters of interest is removed and the parameters are much more stable once the spatial dependence is accounted for. Second, the method reduces to a traditional Poisson regression model estimated using likelihood based methods when spatial-autocorrelation is absent. 

Finally, some comments are in order regarding the implementation of the estimator. Optimizing the objective function is as simple and quick as most likelihood based models. This is probably because of the lack of the need for 
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 way integration even though we allow for full global dependence. Additionally, there is never a need to invert the spatial weight matrix. In fact, the only time the weight matrix enters the objective function (19) is in a transpose form multiplied with the data (design) matrix (i.e., 
[image: image148.wmf]¢
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). In other words, if we can compute the spatial lag of the explanatory variables outside the optimization routine, then the spatial weight matrix never has to be entered into the optimization problem explicitly. This is of immense benefit when the data set is very large and/or the weight matrix is very dense. In such setting, the information- theoretic methods used here would require only an additional 
[image: image149.wmf]N

K

´

 dimensional matrix to be entered into the numeric optimization problem. This matrix could be computed once and for all before being used in the optimization problem. This also means that the information-theoretic method can take advantage of software that can perform computation with sparse matrices efficiently. For example, SAS does not have the capability to perform sparse matrix manipulations but GAUSS does. Therefore, taking direct advantage of this capability in GAUSS or the interface provided by SpaceStat, one can compute 
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 and then use any software that is equipped with non-linear optimization routines to perform the analysis. Of course, GAUSS itself is capable of performing numeric optimization and can itself be used to do the above analysis.

The framework presented in this paper is part of ongoing research. We are currently in the process of analyzing a full set of models with more elaborate outcome types. There are two extensions of the proposed framework that should be of particular interest to those modeling rare crimes. 

First, the framework extends easily to allow for over-dispersion. Clearly, the fact that the Poisson distribution comes with some very strong assumptions about the equality of the theoretic mean and variance can be restrictive. In reality, we typically would like to allow for over-dispersion. Allowing this over-dispersion using likelihood based methods itself requires some very restrictive and ad-hoc assumptions about the form of the mixing distribution, the form of the mean-variance relationship, etc. The end result of these assumption, however, is to allow the average rate to be a variable (with some distribution) rather than a fixed parameter. That is the function of the mixing distribution. In the IT approach proposed here, the ability to model the crime rate as a variable and not a fixed parameter is possible simply by allowing the support space on the signal to have more support points than 2. More dense support point allow the researcher to recover higher and higher moments of the distribution. With this flexibility comes the ability to recover more information and to allow for over-dispersion. These methods are currently being developed.

Second, if we have a true measure of the population at risk then this can be incorporated easily in the IT approach. For example, if we are interested in modeling the effects of a set of location-specific explanatory factors on the likelihood and prevalence of traffic stops that result in an assault on a police officer. In this case we may have the true total count of the number of traffic stops made in a given location. Therefore, the number of times that these result in an assault on the police officer is a true ratio. Hence, we need not use a large number such as 
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 to convert the count into a rate. If we have a true measure of the population at risk, we can easily implement this by defining an observation specific number 
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 and correspondingly an observation specific prior probability (
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) with the corresponding correction to the covariance matrix as discussed in Section 3.
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